人工智能在农业中的应用展望
1.大数据智能
大数据智能是数据挖掘与人工智能技术的深度融合,具体表现:从浅层计算到深度神经推理;从单纯依赖于数据驱动的模型到数据驱动与知识引导相结合学习;从领域任务驱动智能到更为通用条件下的强人工智能。运用大数据智能技术研究空间数据存在大量不确定性和模糊性的问题,探讨复杂多维的非线性问题的解决方案等,对促进智慧农业的实施创造了有利条件;应用大数据智能技术,可以帮助人类从与农业生产过程密切相关的属性数据和空间数据中找出隐藏的规律,按照规律制定正确的精准农业策略,并进行精准预测,达到使农业生产持续、高效、协调发展的目的,更是发展智慧农业应进行的理论研究。
2. 群体智能
当前,以互联网和移动通信为纽带,人类群体、大数据、物联网已经实现了广泛和深度的互联,群体智能带来的信息物理世界深刻地改变了人工智能发展的信息环境,为农业领域的智能化发展带来了新的契机,提供了一种通过聚集群体的智慧来解决农业问题的新模式——数字农业。群体智能技术可广泛应用于农产品线上线下交易、农产品安全实时监控、物流审查管理等。
3.跨媒体智能
随着人类文明的进步以及科技的发展,信息的传播也逐渐从文字、图像、音频、视频等单一媒体形态逐步过渡到相互融合的多媒体形态,这一过程也越来越显现跨媒体特性,而如何实现跨媒体分析与推理就成为了研究和应用的关键问题。农业机器视觉系统是实现跨媒体分析与推理的核心技术之一。将机器视觉技术应用在多种媒体平台,通过将获取的目标作物图像,传送给专用的图像处理系统,得到被摄目标的形态信息,并转变成数字化信号,图像系统对这些信号进行各种运算来抽取目标的特征,根据特征判别进行作物病虫害诊治,帮助决策。应用跨媒体智能技术,将大大提高农业领域对光谱、视频等静态和动态图像的分析与处理能力,促进农业高光谱图像的应用。
4.混合—增强智能与自主智能
由于人类面临的许多问题具有不确定性、脆弱性和开放性,任何智能程度的机器都无法完全取代人类,这就需要将人的作用或人的认知模型引入到人工智能系统中,形成混合—增强智能的形态。这种形态是机器自主智能的重要成长模式,将无人机技术应用于农业生产就是这一智能方向的典型应用。无人机和成像光谱仪结合,对大面积农作物光谱信息进行精确和实时快速的监测,灵活、有效地获取到高分辨率图谱合一数据;同时研究人员还可以根据获得的数据建立基于特定目标的统计模型,研制出基于无人机的农 业低空高光谱的新型遥感技术平台,实现混合—增强智能与自主智能技术在农业领域的应用。随着这一技术的深入发展,诸如无人车、服务机器人、空间机器人、海洋机器人、无人车间和智能工厂等相关技术必将在农业领域得到更广泛的应用。